留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维点云的带式输送机跑偏及堆煤监测方法

徐世昌 程刚 袁敦鹏 孙旭 金祖进 李勇

徐世昌,程刚,袁敦鹏,等. 基于三维点云的带式输送机跑偏及堆煤监测方法[J]. 工矿自动化,2022,48(9):8-15, 24.  doi: 10.13272/j.issn.1671-251x.17948
引用本文: 徐世昌,程刚,袁敦鹏,等. 基于三维点云的带式输送机跑偏及堆煤监测方法[J]. 工矿自动化,2022,48(9):8-15, 24.  doi: 10.13272/j.issn.1671-251x.17948
XU Shichang, CHENG Gang, YUAN Dunpeng, et al. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation,2022,48(9):8-15, 24.  doi: 10.13272/j.issn.1671-251x.17948
Citation: XU Shichang, CHENG Gang, YUAN Dunpeng, et al. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation,2022,48(9):8-15, 24.  doi: 10.13272/j.issn.1671-251x.17948

基于三维点云的带式输送机跑偏及堆煤监测方法

doi: 10.13272/j.issn.1671-251x.17948
基金项目: 江苏高校优势学科建设工程资助项目。
详细信息
    作者简介:

    徐世昌(1992—),男,山西太原人,博士研究生,主要研究方向为带式输送机智能测控,E-mail:TB19050022B2@cumt.edu.cn

  • 中图分类号: TD634

Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud

  • 摘要: 输送带跑偏和堆煤是煤矿带式输送机常见故障。传统的接触式输送带跑偏或堆煤检测方法在耐用性、灵敏度、可靠性等方面无法满足煤矿安全生产要求,而基于图像处理方法的检测效果受图像颜色信息影响较大,易产生误识别问题。提出了一种基于三维点云的带式输送机跑偏及堆煤监测方法,采用线激光双目相机采集输送带表面的三维点云数据,通过分析处理点云数据对输送带跑偏和堆煤进行实时监测。在输送带跑偏监测方面,采用欧氏聚类和随机采样一致性算法滤除多余点云数据,提取输送带边沿数据点,并采用均中心表征值表征输送带跑偏程度,以减小输送带宽度方向形状变化对监测的影响。在堆煤监测方面,通过处理点云数据得到煤流等效高度来表征煤流高度和宽度信息,实时评估堆煤程度。搭建了带式输送机跑偏及堆煤监测系统试验台,试验结果表明:输送带速度为0.5~3.0 m/s时,输送带边沿点检测误差为−2.84~1.26 mm,最大误差仅为2.84 mm,说明该系统能可靠实现跑偏故障监测功能,并能准确预测跑偏趋势;在输送带上堆积煤炭样本(质量为14~41 kg,以1 kg为增量),当煤炭质量在14~24 kg及28~41 kg范围内,堆煤检测结果均正确,在25~27 kg范围内存在检测错误情况,原因是该范围内煤炭样本质量较接近触发堆煤报警的临界值27.6 kg。

     

  • 图  1  带式输送机跑偏及堆煤监测系统

    Figure  1.  Deviation and coal stacking monitoring system for belt conveyor

    图  2  相机布置位置不同时激光线扫描获取的点云图像

    Figure  2.  Point cloud images obtained by laser line scanning when camera is at different positions

    图  3  欧氏聚类前后输送带点云可视化对比

    Figure  3.  Visual comparison of belt point cloud before and after Euclidean clustering

    图  4  RANSAC处理前后输送带左侧分段点云可视化对比

    Figure  4.  Visual comparison of point cloud of left belt segment before and after random sampling consistency processing

    图  5  输送带左右边沿表征

    Figure  5.  The left and right edges characterizations of belt

    图  6  输送带中心表征值和均中心表征值变化

    Figure  6.  Change trend of central characterization value and mean central characterization value

    图  7  输送带堆煤前后对比

    Figure  7.  Comparison of coal flow images and point cloud visualization before and after coal stacking on belt

    图  8  带式输送机跑偏及堆煤监测系统人机界面

    Figure  8.  Human-machine interface of deviation and coal stacking monitoring system for belt conveyor

    图  9  输送带跑偏

    Figure  9.  Belt deviation

    图  10  输送带边沿点检测相对误差

    Figure  10.  Relative errors of belt edge points detection

    图  11  试验d2−1输送带中心表征值变化

    Figure  11.  Central characterization value deviation change of belt in test d2-1

    表  1  输送带跑偏趋势预测试验结果

    Table  1.   Prediction test results of forecasting belt deviation trend

    速度/(m·s−1诱导跑偏方向试验序号预测结果运行圈数
    0.5d1−1正确1.5
    d1−2正确1
    d1−3正确2.0
    d1−4正确3.5
    1.0d2−1错误
    d2−2正确2.0
    d2−3正确4.0
    d2−4正确3.5
    1.5d3−1正确1.5
    d3−2正确2.5
    d3−3错误
    d3−4错误
    2.0d4−1正确1.0
    d4−2正确2.0
    d4−3正确3.5
    d4−4正确3.5
    2.5d5−1正确1.0
    d5−2正确0.5
    d5−3正确1.5
    d5−4正确1.0
    3.0d6−1正确0.5
    d6−2正确0.5
    d6−3正确1.5
    d6−4正确2.5
    下载: 导出CSV

    表  2  输送带堆煤试验结果(部分)

    Table  2.   Partial test results of coal stacking on belt

    样本质量/kg试验序号hf_max /mm是否触发报警检测结果
    25s12−125.44正确
    s12−228.27错误
    s12−325.64正确
    26s13−126.88错误
    s13−225.57正确
    s13−327.77错误
    27s14−126.02正确
    s14−227.74错误
    s14−327.28错误
    下载: 导出CSV
  • [1] LIU Xiangwei,HE Daijie,LODEWIJKS G,et al. Integrated decision making for predictive maintenance of belt conveyor systems[J]. Reliability Engineering & System Safety,2019,188:347-351.
    [2] CHU Qi, MENG Guoying, FAN Xun. Analysis of speed and belt deviation of the conveyor belt[C]. The International Conference on Materials and Products Manufacturing Technology, Chengdu, 2011: 444-447.
    [3] ZHANG Mengchao,SHI Hao,YU Yan,et al. A computer vision based conveyor deviation detection system[J]. Applied Sciences-Basel,2020,10(7):2402. doi: 10.3390/app10072402
    [4] 王建勋. 煤矿输送带传输故障实时监测技术[J]. 工矿自动化,2015,41(1):45-48.

    WANG Jianxun. Real-time fault monitoring technology for coal mine conveying belt[J]. Industry and Mine Automation,2015,41(1):45-48.
    [5] 张春明. 基于线激光辅助的皮带撕裂视觉检测技术研究[D]. 秦皇岛: 燕山大学, 2012.

    ZHANG Chunming. Research on vision detection technology testing the rip of conveyor belt based on line laser stripe[D]. Qinhuangdao: Yanshan University, 2012.
    [6] 郭启皇. 基于Otsu算法的输送带撕裂视觉检测系统研究[D]. 太原: 太原理工大学, 2017.

    GUO Qihuang. Reserch on conveyor belt tear visual inspection system based on Otsu algorithm[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [7] 吴文臻. 智能视频监控系统在煤矿井下的应用研究[J]. 煤炭技术,2016,35(4):271-273.

    WU Wenzhen. Application research of intelligent video surveillance system in coal mine[J]. Coal Technology,2016,35(4):271-273.
    [8] 初琦. 带式输送机动态称重检测理论与试验研究[D]. 北京: 中国矿业大学(北京), 2014.

    CHU Qi. The method and experimental research on dynamic weighing of belt conveyor[D]. Beijing: China University of Mining and Technology-Beijing, 2014.
    [9] 李铬,李春广,梁睦,等. 煤矿带式输送机事故分析及防护措施[J]. 中国安全科学学报,2006,16(3):140-144,148.

    LI Ge,LI Chunguang,LIANG Mu,et al. Accident analysis of belt conveyor used in coal mine and its protective measures[J]. China Safety Science Journal,2006,16(3):140-144,148.
    [10] 蒋志龙,张大女. 基于ADXL335的堆煤传感器的设计[J]. 工矿自动化,2012,38(8):87-89.

    JIANG Zhilong,ZHANG Danü. Design of coal piling sensor based on ADXL335[J]. Industry and Mine Automation,2012,38(8):87-89.
    [11] 孙君,崔凯. 基于水银开关的矿用本安型堆煤传感器的设计[J]. 工矿自动化,2011,37(5):74-75.

    SUN Jun,CUI Kai. Design of mine-used I. S. sensor of coal piling based on mercury switch[J]. Industry and Mine Automation,2011,37(5):74-75.
    [12] ZHU Aichun, GANG Hua, WANG Yongxing. The research on the detection method of belt deviation by video in coal mine[C]. The International Conference on Mechatronic Science, Electric Engineering and Computer, Jinan, 2011: 430-433.
    [13] WANG Jinbo, LIU Qing, DAI Mengting. Belt vision localization algorithm based on machine vision and belt conveyor deviation detection[C]. The 34rd Youth Academic Annual Conference of Chinese Association of Automation, Jinzhou, 2019: 269-273.
    [14] LIU Yi,MIAO Changyun,LI Xianguo,et al. Research on deviation detection of belt conveyor based on inspection robot and deep learning[J]. Complexity,2021(3):1-15.
    [15] ZHANG Mengchao,ZHOU Manshan,SHI Hao. A computer vision-based real-time load perception method for belt conveyors[J]. Mathematical Problems in Engineering,2020,2020:1-9.
    [16] QIAO Wei,LAN Yuan,DONG Huijie,et al. Dual-field measurement system for real-time material flow on conveyor belt[J]. Flow Measurement and Instrumentation,2022,83:102082. doi: 10.1016/j.flowmeasinst.2021.102082
    [17] 楚良. 基于三维点云的室外场景分类与重建方法研究[D]. 西安: 西安理工大学, 2020.

    CHU Liang. Research on outdoor scene classification and reconstruction method based on 3D point cloud[D]. Xi'an: Xi'an University of Technology, 2020.
    [18] TRYBAŁA P,BLACHOWSKI J,BŁAŻEJ R,et al. Damage detection based on 3D point cloud data processing from laser scanning of conveyor belt surface[J]. Remote Sensing,2020,13(1):55. doi: 10.3390/rs13010055
    [19] SCHNABEL R,WAHL R,KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum,2007,26(2):214-226. doi: 10.1111/j.1467-8659.2007.01016.x
    [20] YANG Yanli,MIAO Changyun,LI Xianguo,et al. On-line conveyor belts inspection based on machine vision[J]. Optik,2014,125(19):5803-5807. doi: 10.1016/j.ijleo.2014.07.070
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  34
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 修回日期:  2022-09-08
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回